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ABSTRACT

A numerical technique for calculating the optimal control for a class of
systems and constraints is described. Nonlinear, time-varying deterministic
systems subject to hard state space and hard control space constraints are con-
sidered. Three numerical procedures are developed to perform the optimization.
A technique for the minimization of a scglar function of a vector variable is
described where the components of the vector are constrained by upper‘and‘lower
bounds. This minimization procedure is incorporated in a method of constraint
mapping which maps the state space constraints into the control space. To
improve convergence properties of the optimization procedure the notion of a
pseudo performance index is introduced. Initial and final states may be partial-
ly or - completely specified. Any unspecified initial or final state vector
components are optimally selected.

An iterative technique for the optimization is demonstrated which 1. -
generally converges to a local minimum of the performance index. The method
uses the direct approach to optimization and is very efficient computétionally°

Exzmples of space vehicle trajectory optimization problems are given.
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1. PERSPECTIVE - I

1.1 Recent Trends in Modern System Theory

For the purpose of this work, we will consider that modern system theory
has evolved from the 1950's when the state variable formulation of control
problems was introduced and studied by Bellmanl. Of course we recognize that
the state variable formalism is not new; only its application to control problems
is recent. This is a convenient, if somewhat artificial, beginning.

As noted elsewherez’3 the use of the modern theory enables the designer
to consider his problem in the time domain with the physical time domain con~-
straints as an integral part of the problem formulation. The so-called "cut-
and-try" technigques of the classical control theory are no longer necessary.
However, a certain new type of “cut-and-try* design is introduced. This new

scheme is systematized to the extent that algorithms are created which assure

- that each succeeding try 1is hetter than the previous one, a process ,hich we

éall'monotone iteration. The‘most significant property of monotone iterative
procedures is that by usingAthem we are always assured of doing better if we
persist. Tha£'is, if n iterations have produced a certain result, then the

(n + 1)st iteration will produce a "better” result. The method of solution to
be described in Chapter 3 is an example of such monotone iteration.

The term Ybetter" is given a precise meaning by the introduction of a
mathematical performance index. This is a functional which represents how well
the system is doing. Generally we ask for this functional to be taken to an
extreme value. Without loss of generality, we will henceforth assume that it
is to be minimized. Now, in many systems an appropriate input (a time function)
can be generated which will drive the system through its state space (in time)

in such a manner that the performance index is indeed minimized. However, in



~ many systems, such control (i.e., such an input) would also lead to gross mis-
behavior of the system. This may arise f?om saturation -nonlinearities, oscil~
latory modes of operation, excessive fuel requirements, excessive aerodynamic
pressures, velocity, etc. It is for such reasons that many physically meaning-
ful problems involve constraints on the state of fhe system and the inpuis to
the system. We say that, in order to avoid certain undesirable behavior of the
syétem, state space‘constraiﬁts and control space constraints are imposed.

| The evolution of modérn system theory has passed through many different
phases of develqpment during which time a variety of'systems and constraints
have been considered. It is hardly necessary here to discuss these systemé
‘and ;onstraints which have been considered in the past. It';s sufficient to
point out that the work‘described_in-these paées is.the subject of avlarge
amount of current éffort by sfstem theorists and mathematicians.

The work deécribed in these pages is an engineering solution to the opti-

mal coptrol problem for totélly constrained (i.e., state and control space

hard constraints) inver?ibie systems.. Tﬁe'conStraints considered are practical

ones. The method of solution is qompﬁtétionélly.feasible and complefely auto-
matiC'in that,‘ﬁo decisiohs,p&héhe‘gémputer operatof.aré required dﬁfing the
édurse éf the cgmputation; . ‘ ’

-Section 1.2 co#frasts this methoq of ;olution with others recently pro-
posed. - " . .

1.2 State Space Constraints

In the evolution of modern Sysfem theory mentioned abqve the ?irst con-
_str;ints to‘be considered were control space constréints. These typically re~
quired tﬁe control vector to be containedin a closed region of the control
space. 'Until 1959 there was no méntipn of state space constraints. This was

probably true for two reasons. The control space constraints provided suffi-



ciently complicated analytical difficulties by themselves and also, there were
not suffiéient results published to attract attention to certain analytical re-
sults which proved to be physicélly uhrealizable. In 1959, a fundamental paper
by Gamkrelidze* considered the problem of state variable constraints in some
detail. His paper delineates a set of necessary conditions which a system
trajectéry and control.must satisfy in order to be optimal when the state of
the system is restricted to lie in a'closed.region and the control is also re-
stricted to 1lie in a closed region. It is shown that those portions of the
optimél trajeétory which fall entirely within the closed region in the state
space must satisfy the.maximum principle. A necessary condition is also proven
for the p?rtions of the trajectory which 1ie1entire1y on thelboundary §f the
.closedlreg;on in the state space. Furthér, a jump condition is defined which
'ié necéssarily satisfied by every pair of adjoining sections of an optiﬁal tra-
je;tory, one of whicﬂ Jies in the interior and the othervon the boundary of
this closed region. These'resﬁlts give certain analytical properties of opti-
mél trajectories bﬁt do ngt,seém to yield Qasily to computational solution of
) optimal prégramming pfobléms. éerkovitz?eiobtaineé fhg same results using the
éa;culgs of variations.

-:in 1961, Chaﬁgs determined a simple% set of necessary conditions for the
special ;ase of fixed time optimﬁl control with free end point. Moreovef, he
:showed that fqr linear systeﬁs,vif the restricfed regipgs in the séate‘space
and.in‘the'cbntrol space are convex, the condition stated is also sufficient.
Thig coﬁdition also holds for minimal time'cohtrol between two fixed points.
Again, the maih-emphasis in Chang's paper is to derive necessary (and sometimes

sufficient) conditions with little regard for computational feasibility.

*Recently rewrit‘ten4
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Some consideration of the computational aspects of optimal programming
problems was given in Breakwell's® paper in 1959, However, in 1961, several
papers appeared which seriously considered the computational aspects of the
optimization problem. Some of these did not consider any state space or control

. ,.1,8 ) : .9
space constraints ; some considered. only control space constraints ; some
' 10 :
considered only state space constraints ; and some considered both state and
o1 ‘ o 12
control space constraints = . In July 1962, Dreyfus published a paper which
summarized his earlier work and gave some numerical results and discussion of
a'computafiondl technique for the totally constrained problem. He was inter-

ested in a single, time indépendent constraint on the state variables and a

. scalar control variable of a more ‘general type than Gamkrelidze considered.

Dreyfﬁs derives the computatiohal procedure through use of a dynamic program-

minglformulation of the>problem. In this way he obtains expressions for incre-

men£al imprpvéments in the control program at each step in the iteration.
Another scheme which has gained wide ;cceptance fails in the gepefal

713,14 s an early advocate of gradient

cé£egory of gradient.techniques. Kelly
ﬁethéds applied to optimal programming problems.

The two ﬁoét significant results.dgaling with the topic of the present
work are due.to Ho and Brentan115 and benham_and Bryson16 both of which appear-
ed iﬁ November 1562; In-the paper by Ho and érentanilS; fix;d time problems
a?é'qonsidered with hard inequality'cqﬁstraints either in the étate space or
the con£rol space. They note‘that'considerable'difficulty is encountered for
non-linear systems using ‘their method. Also, the restriction to either state
or control space constraints is a significant one. On the other hand, Denham
and nysonle, considered general state and control space constraints with a

siﬁgle inequality constraint and a scalar control variable. Their method is

essentially one of steepest descent. A striking disadvantage of their approach



is that complicated on-line calculations and decisions by the researcher are
required dﬁring computationl7.- They consider free end points and ffeé final
time problems as well as those mentioned above.

;t is well to note ex;ctly the class of problems being solved in the present
work in order to plaee it amoﬁg the efforts mentioned above. Here we consider
ﬁqn—linear, time-varying, deterministic systems which are invertible (to be

.defined later). The constraints are simultaneously imposed in the sfate and
control spaces and are hard inequality constraints. The performancé index is a
’geqeral function of thé state and the control over a prescriped time interval.
In‘general, bqth the éta£e.and control variables will be vectors. Thé technique
to be deséribed is a gradient~type method based on two principles. Fi;st,_a
.mapping is Qefined‘which polleqts all state and control space constraints into
‘the contrgl spaqe*. Secondly, a minimization techniquels‘is used to sﬁccessively
".Selept'cohtrols which reduce éhe performance iunsde. |

It Qould appeér that this method and that of Denham and Bryson éfé combeﬁi—
‘tive‘and ghould, in fhe.fdtufe, be carefully compared. The méthd& of - this work
isAdireqt**, whereas most of the other authors have concentrated on indirecp '
techniciués° In-thé opinion of the author; there has not been conélusive evi-
dence thét one scheme.is better than the other for all problems. Even so, only
liftle work:has been done on aireét methods of solution. It Seémé-that,.gf i
this stage‘bfAteéhnology; we canﬁot exclude either approach.

A recent publication of Friedland28 gives some evidence that several compu-
tational techniques for nonlinear programming are currently being comparéd in é

unified study. It is"felt that work such as this is necessary to effectively

use appropriate'techniques for specific problems.

*¥This is a generalization of a result published earlier by the authors.

**¥A direct method depends on successive comparisons of a function. An indirect
method seeks a minimum by means of a necessary condition for the minimuml4.
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27 THE PROBLEM
In what foilows, capitél Roman letters will.denote matrices whose QimensiOns
willlbe obvious from the text. Small underlined Roman letters will denote"
vectors. -Again, dimensions will be obvious. Any deviations from this notation

will be clearly indicated in the text.

An expression involving functions and functionals will be accompanied by a

statement indicating its domain of definition. For example:
x(t) = £[x(t)]; t € (o0,T] (2.0.1)

is an equation relating a vector function g(t) and a vec¢tor functional f defined

on x(t) for t € (O,T] where ( and ] have their usual meanings. The equation
%(t) = £[x(t)] . (2.0.2)

is .an expression involving vectors of numbers. For the discrete case, a similar

distigction é.s made : . - _ ' , t
Cx(k + A) = ;:E[zg_(k), uk), Al; k=1, 2, ..., K _ (2.0.3)
and
x(k * A) = £[x(x), y_(k):, Al (2.0.4)

Only stationary systems will be considered since time varying systems of
equations can be written as stationary ones by introduction of another state

. 2
variable..
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2.1 Definition of Invertible Systems

If

£(t) = £[x(t), u(®)}; t €[o,T] (2111

we say that (2.1.1') is invertible if there exists a single valued vector

function § such that
u(t) = g[&(t), x(t)]}; t €[o,T] (2.1.2")

Since we are dealing with a problem of numerical solution of optimization
problems, we immediately turn our attention to the discrete version of (2.1.17)

and (2.1.2'), namely

x(k + A) =

[x(k), u(k), Al; k=1, 2, ..., K 5 (2.1.1)
and
ulk) =glxk + A), x(), A} k=1;'2, ..., K | (2.1.2)
Two.gepérél classes of invertible sy%tems may be defined as follows.
l} Claés 4 invertible systéms.

This class is made up of two subclasses:

a) Class dl (linear control) invertiblefsystems:

x(k + A) '; [x(k), Al + B[x(k), Alu(k); k=1, 2, ..., K. (2.1.3)



where, X is an n-vector and u is an m-vector, B is an n x m matrix with the'typi—

cal element
= bij[)__c_(k), Al k=1, 2, ..., K (2.1.4)

Moreover, it is required that the matrix B have rank m. This requirement is
necessary to insure the independence of the control variables’.

b) Class 02 (non-linear, diagonal control) invertible systems:

x(k + &) = £{x(k), Al + Blx(k), Al Hlu(®)]; k=1, 2, ..., K (2.1.5)

where B is as described for class 01 invertible systems and H is an m x m

diagonal matrix with the following typical elements each of which has an inverse:

o [u 1= .
. 11 1 .
hi' = ; k= l, 2) ooy K . (2.1.6)
Jod o i#j

2. Class B invertible systems:
This class contains all invertible systems not contained in class &.
'The development to follow will explain in detail a procedure for optimi-

"zation of systems which are class @, invertible. The results are immediately

1

extended to class az and f invertible systems.

2.2 Statement of the Probiem

Given the folldwing class & invertible system

1

£(£) = 2[x(t) ] + Bx(£) } u(t) (2.2.1)




determine
u(t)
such that
Flx(t), u(t), wl (2.2.2)
is minimized and
x (£) < x(t) < x'(¢) (2.2.3)
~and

u(t) < ult) < ut) (2.2.4)

all for t €[O,TJ. Statements such as (2.2.3) signify a component by component
relationship between vectors.
We will assume that artificial constrainfs will be imposed in the absence

of any components of (2.2.3) or (2.2.4). These will be of the form

where £ is a vector of suitably large positive numbers.
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The terms of this problem statement are defined below for t €[0,T].

x(t) . (n-dimensional) state vector

Et(t) (n-dimensional) state consfraint vectors }
B(t) (m-dimensional) control vecfor E
Ei(t) (m-dimensional) control constraint vectors i
£ (n-dimensional) system vector |
B (n x m dimensional) interaction matrix

b

performance functional

A typical example of the performance functional is

T n m

n
F = bIQ [a X(t) +b 2 u?(t)] dt + p Z |x.(T)‘
0 i=1 1 1 3 1

i=1 i=1

The control vector Eo(t); t €[0,T], which satisfies (2.2.2) subject to
(2.2.1), (2.2.3), (2.2.4) is called the globally optimum control vector. If
u'(t); t €[0,T], is such that, for all du(t); t €[0,T], F[x'(t), u'(t), T] <

Flx'(t) + 8x(t), u'(t) + du(t), T]; t € [0,T], then u'(t) is & locally optimum. : !

control vector. Note that the perturbed controls and states must satisfy (2.2.3)

and (2.2.4) and u(t) are small,

The techniques of this study determine a locally optimum control vector.
To find the globally optimum control vector, we simply select the ‘best’ Llocally
2 k
optimum one. By this we mean that if lg(t), u(t),..., u(t); t €[0,T] are

locally optimal, then there existsaj such that; for all i # j,

F[-Jé(t), J'3<‘c>, T] < F[iyt), _ig(t), t); t € [o,T].
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We call jgft); t €[0,T] the globally optimal control vector. Since the number
of locally optimal control vectors may be very large, generally, as in this
work, one is satisfied to find a locally optimal control vector. Moreover,

in many problems, physical reasoning shows that there is only one locally

optimal control vector and therefore it is globally optimal.
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3. A SOLUTION

3.1 Introduction to Solution

The method of solution to be described has two main subdivisions. First,
the state space constraints at time k + 1 are mapped into the control space at
time k. These constraints along with the control space constraints at time k,
determine the subspace of the control space which contains all admissible sets
of controls at time k. This is the constraint mapping procedure. Next, the
control at time k is selected which minimizes a pseudo performance index. At
the end of a major iteration it will be shown that no control or state space
constraints are violated and that the‘performance'index originally specified
(in (2.2.2)) is strictly smaller than it was at the end of the previous major
iteration.

The present chapter contaiﬁs the detéils of the method outlined above.
First we consider the constraint mapping procedure in some detéil, then discuss
the particularly important one step map  which will prove useful later. Next
the method of adaptive constrained descent is described. This techniqué is used
both for the mapping and later for the optimization. A brief diséussion of the
augmented performance index follo_wso The chapter concludes with a detailed
description of the overall optimization procedure using the schemes described
earlier in the chapter.

As-remarked earlier, this work is especially w;itten for class 01 in-
vertible systéms‘as explained in Chapter Two.

3.2 Constraint Mapping

It is convenient to define several sets in the space of real numbers. The
notation follows.

In the state space, XJ

k is the set of all state variables xj(k) at time kin
i

i I i is the set of all state variables xj(k) at time ki 4+ 1, Of .
i R
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course, the set of all xj(k) may be ordered and assembled into a state vector
x(k) at time k. The underline signifies a vector whose components are xj(k).

In the control space we have the following sets to be defined below: 1Ui,
Lok i kK s
Byd ) Bgd ) Fud, I,

K’ K’ X In general the subscript indicates the time at which the

3
Uk’

% 5 L
set is defined (i.e., Ui is the set UY at time k = 1) . Thus, for example,

* * 4 *
uj(k) € Ui is the jth element of a particular control vector E(k) at time k.

¥
¢ is the null set. R is the real line. A bar over a set (e.g., Ui) denotes
its complement. The sets are defined in terms of the problem statement of
(2.2.1), (2.2.2), (2.2.3), and (2.2.4) for j =1, 2, ..., m,

The technique described below shows how to construct a set 1U‘J so that

- k
1UJ = 3U‘] .
3
uj(k) € Ui implies violation of (2.2.1), (2.2.3). A control
3
variable selected from Ui is sufficient to drive
the system outside the allowable region in the
state space (at time k + 1).
uj(k) € 2 ; implies satisfaction of (2.2.4). The set so de-
fined is the connected set on R whose boundaries
are u;(k) and ug(k) in (2.2.4).
1 3 '
Vol hd
k
1 3 .
u, (k) € 1 Ui implies satisfaction of (2.2.1), (2.2.3). A control
+ s
variable selected from 1 Ui necessarily drives the

system into an allowable state at time k + 1, where

the allowable states are defined by (2.2.3).
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%1 14 (Y2
3o Yyd 3
Uk_Uank(

4

uj(k) ¢ Ui implies violation of (2.2.1), (2.2.3), and/or (2.2.4).
In order to drive the system into an allowable (defined
by (2.2.3)) state at time k + 1, it is necessary to

x5
select a control from Ui.

**j_l'j ZJ
U = Uank

kk_ g
uj(k) € Uﬂ implies satisfaction of (2.2.1), (2.2.3), (2.2.4).
In order to drive the system into an allowable state

at time k + 1, it is necessary and sufficient to select

*k__§
a control from Uk°

It is clear that all these sets are compact.
%k 4 . :
The set Ui is the set of all controls which are candidates for the :
"optimal" control. It is this set which we would like to calculate. It will

EE
be shown below that Ui is a function of the state and the control at time k.

The conjecture is made that for general systems, or even for general invertible
*k_ 5
systems Ui,cannot be calculated. An example is given which shows how to calcu-~

£ * 5
late Ui in a special case. A set UJ the construction of which will be ex-

k)

plained, is a function of the present state of the system and, in general,
appears to be the smallest set which can be easily calculated thch contains the
optimal control. This question of a 'best” *Ui is a subject which deserves
further attention. It is not discussed in this work.

3

k7 called a one step map 1is easily performed for the

*
The calculation of U

. * + . . )
class Qi invertible systems by determining its endpoints uE(k). This, it will
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be shown, only requires examination of x%(k + 1). For general invertible systems

the space Xk 1 must be searched.

% 4
The calculation of Ui proceeds as follows:
i
1. Calculate 1Ui : Given ECKf);J search Xj(ki + 1) suchthat x}(ki + 1) <
i i e
Xj(ki + 1) < x;(ki + 1) until the‘uj(ki) of the inverted system reaches its

maximum and minimum values. These boundaries define a compact, connected set

lUi' on R.
"1 . .
2 3 + - " 2. j
2. Calculate Uk : uj(ki) and uj(kj) are the end points of Uk on R.
i . i
* X i 13 9 i
3. J o_ JﬂJ
3. Calculate Uk.' Uk. = Uk_‘ Uk,°
i i i i

In general, the searching operation of step 1 above will requirean iterative

numerical procedure. However, if the inverted system can be represented by

ui(k) = xi(k + 1) - gi(g(k)) i

)
—
|3
A
-
=]

(3.2.1)

then u?fk) will occur when Xi(k + 1) = xtﬁk + 1) and u;(k) will occur when
xi(k + 1) = x;(k + 1) so the searching procedure is unnecessary for the case of
(3.2.1). It might be noted that most systems can be represented as in (3.2.1).
For the general case, a numerical procedure has been developed to perform
the necessary boundary mapping. A description of this procedure, the method of
adaptive constrained descent is given in the next section.
In light of the preceding discussion of constraint mapping, let us carefully

examine its application to class @ invertible systems. It is shown later that

1
j »

X For

. i *
we are interested in the one step map problem which yields the set U
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the al-type systems
x(k + Al = £[x(k), A] + B[x(k), A] u(k) (3.2.2)
For a given state x(k) we can write (3.3.2) as
x[k + Al = £2[x(X), A] + v(k) (3.2.3)
where
v(k) = B[x(k), Al u(k) (3.2.4)

For independent contrels ui(k) this transformation always has an inverse and
thus u(k) can be determined from v(k). Equation (3.2.3) is precisely the form
desired for the one step mapping.

For ﬂz~type systems
x[k + Al = £[x(k), A] + B[x(k), A] Hlu(k)] (3.2.5)

where H is the diagonal matrix described earlier. The requirement here, for the
successful application of the one step map technique is that hii[ui(k)] have an
inverse. The notion of linear independence is not present here and it is diffi-
cult to formulate a set of physiqal requirements on a system for this condition
to exist.

- For ﬁ—type systems, again, it is difficult, if not impossible, to discuss
physical interpretations of the invertible nature of non-linear control systems.

A thorough study of this problem may very well lead to useful results. For
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the purpose of the present study, however, such problems are not considered.

Kk 4
This section is concluded by a discussion of the existence of Uio It

J

*
was cobserved earlier that we could find a Uk

which is a function of x(k). If
*k_ 5
there were a Ui then it would be a function of x(k) and u(k). To show this,

consider the following general inverted system

u () = x (k + 1) - gl[z(k)]
u (k) = x. (k + 1) - g [x(k)]
. 25 S (3.2.6)
um(k) = xm(k + 1) - gm[z(k)]

. *¥ 4
If we selected ui(k) only on the basis of x%(k + 1) and x(k), it is not clear
that this would ensure that gf(k + 1) <x(x+ 1) < §+(k + 1). Counterexamples

*k
are easily found to show that, in fact, u%(k) must be selected on the basis of
more information than x%(k 4+ 1). Let us suppose that because of coupling be~
. : *k 4 +
tween equations of (3.2.6) the selection of uI(k) depends on x§(k + 1) as
+
well as Xi(k + 1). Clearly x2(k + 1) depends on u2(k) also. Therefore, it is
* %

easily seen that u%(k) is a function of x(k) and u(k). However, u(k) is as

*k 4 . . *% 4
yet unknown. For each u(k), uI(k) will change (as will the other uE(k)).

LT JS X
So, in general, it is impossible to find uT(k) and therefore, for computational

kk_ 4
purposes, it does not exist. There are special cases for which Ui does

J

X
exist and is equal to Uk as determined by the construction described earlier.

Consider a linear system represented as shown below.

x(k + 1) = AK) x(k) + U(k); k=1, 2, ..., K (3.2.7)
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where _
A(k) = 0 1 0--~--0
0 0 1-=-=--0
0~ = = = = == = = = = ~ 1
anl(k) anz(k) ______ ann(k)
. -
T
U(k) = [0 0----0 u(x]

The system (3.2.7) has a single state variable constraint x;(k) < Xn(k) < x;(k)
and a constraint on the single control u (k) < u(k) < u+(k). Because the only
state variable constraint is on the one variable with a direct input, and since
there are no other inputs, no selection of U(k) can drive the variables xi(k + 1),
i # n into inadmissible regions (for inadmissible regions for these variables

do not exist). Therefore, the procedure for determining *Ui will give **Ui.

This is a special case, to be sure. However, it does show an interesting
property of systems which correspond to all-pole systems in the continuous,
stationary case. This is not the most general such system, but is satisfactory

* 4

for the purpose of exhibiting a system for which the Ui which we know how to
*k g

calculate is identical to Uk.

%5 * 5
The fact that Ui does not exist in general, enhances the value of Ui.

If we consider the optimization process to be a search of admissible controls,

J

K
the existence and use of Uk reduces the space which must be searched.

3.3 Adaptive Constrained Descent

The method of adaptive constrained descent is one of the so-called direct

methods of minimization. The problem is to determine the minimum 7t = f(gl)



19

such that x < 51 S §+ where £ is a scalar function of its wector argument.
We let
7° = _ min + zt = f(go) .
x <x <x
- i i i+l
The technique generates a set of x such that 27 > Z . Thus the sequence of

Zi is monotonically decreasing. 1If, for i = P the technique cannot produce
ZP+1 < ZP, then ZP = z° and EP = 50, the minimizing value of x or at least a sad-
dile point of f£(x).

The minimization proceeds down one variable at a time within the restricted

region., Each variable is changed until the sensitivity of Z with respect to

that variable has been sufficiently reduced., The amount by which the j-th

variable is changed at each step is €j. Initially €j'is set to an appropriate

value. -Experience shows that for many problems Ej = (x; - x})/S is a reason-
able value to start with, The minimization on one variable is continued until
the sensitivity of Z with respect to this variable is sufficiently reduced.
During this minimization on one (the j-th) variable, €j is reduced to permit
partial covergence to the minimum in one variable. When the sensitivity of Z
with respect to this variable is reduced below a cut-off value (minor cycle
sensitivity criterion) a minor cycle is complete. If x is an n-vector, n minor
cycles constitute a major cycle.

The details of the method may be found in Appendix A and elsewherels.

3.4 A Pseudo Performance Index

For numerical purposes, it may be helpful to introduce an augmented
performance index to account for state space violations which occur at ''future”

times. This idea will become clear later., We introduce the augmented per-

formance index H[x(k), E(k), k] defined as the 'cost' of going from x(k)
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to x(K).

H(x(k), u(k), k] = F[x(k), u(k), K] + G[x(k)]

G[x(k)] is the penalty incurred for violating the state space constraints.
(We will insure that G[x(k)] = 0 at the conclusion of the iterative process.)

A convenient form for G[x(k)] is

- n K ’ + _ * N 2
olx®] = B T fo Ix 00 - xf0] v 6 G0 - x 001} w0 - K}
where

. X, () + x, (k)
¥, (k) = ——F——
i 2
and

Unless otherwise mentioned we use Xik = 1, The minimum of F which is selected
may depend on xik.

Using the one step mapping procedure we can ensure that the state space
constraints at one instant will not be violated. GLE(k)] will account for those
at later instants wﬁich are violated, At any particular time ki’ we can be sure
that there are no state or conytrol space constraint violations for k < ki’ and
at ki = K, we can be sure there are no state space constraints violated at

any time,
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3.5 Direct Fixed-Time Optimization of Invertible Systems
Let us assume that we have no prior knowledge of the optimal control and
that, as an alternative to prior knowledge,we have selected ui(k) =M; 1 =1,

2, «o., mand k = 1, 2, ..,, K, . Moreover, with this "control", the value

2
of the performance index is °4 = °r + % where H and G were defined in the
previous section. F was defined in (2.2.2). The optimization procedure is
made up of minor iterations and major ixerati;ns, If there are K time
instants between k = 1 and k = K, then one starting iteration and K minox
iterations comprise one major iteration,

The starting iteration is the search for "best" initial conditions on the
state variables. It is simply a search, using the adaptive constrained descent
procedure, over the set of starting values whose boundaries are gi(l) and a
selection of the one which minimizes the augmented performance index. The de-
tails of the search are the same as for any of the control vectors, for example
u(l), and are given below.

The minor iteration has several parts. ﬁpon entering a minor iteration
at time k, the following information is known: x(k), E;(k + 1), B;(k):

H[E(k)z Eﬁk), k], Moreover we have constructed the control up to time k so
that GLE(l)] = G[E(k)],which means that.there are mo:state.space constraint
violations before time k. With this information the iteration proceeds..

1. i ﬁvl

2. Use the one step mapping technigue to determine *Ui.
3, Select a u, (k) € *Ui.

i k
4.  Check to see if x (k + 1) < x(k + 1) < x (k + 1). That is,

ek
check to see if u (k)€ U;. If this is true go to 5. If not,

go to 3.
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5. Compute H[x(k), u(k), k]. Continue selecting ui(k) € **Ui

until H[x(k), u(k), k] is minimized (using thz method of

Section 3.3).
6. If i # n, increase i by one and go to 2, If i = n, keep a

record of the current H[E(k), E(k)’ k] and compare it with

previous values. If no significant decrease has occurred,

this completes the minor iteration, If a significant de-

crease has occurred,go to 1.
Thus, at the end of a minor iteration at time k, E(k) has heen set so that

i

k)
¥k i
(therefore, all ui(k) € Uk ;

%
each ui(k) € U no state space constraints at time k + 1 are violated

i=1, 2, ..., m), and u(k) is, in some sense,

"pest' to date. Moreover, at the end of the minor iteration the states and con-
trols for all previous instants have been calculated and stored. Also, the
portion of H[E(l), E(l): 1] which depends on these states and controls has been
calculated and stored. Thus, the calculation time is shortened as the calcu-
lation proceeds.

A major iteration consists of one starting iteration and K minor iterations
and thus represents a complete pass through the controls B(k), k=1, 2, ..., K.
(See Appendix B.)

A discussion of the stability of the method proposed above and its ability
to converge to a critical point of F is given here, First we show a source of
instability of this technique., Suppose that F = QF at the end of a major
iteration, The next minor iteration will select a set of vector components
ui(l), i =1,2,..., m, which reduces the performance index to lF where lF < OF.
This new control E(l) in general will change the state of the system 5(2),

x(3), ..., §<K)' To calculate u(2), for example, we need the new value of
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%5 *_ 5
x(2) to determine U, j=1,2,...,m. It is possible that the set Uj does not
= Iz F R

contain the former "best estimate’ for uj(Z) and so the old uj(z) cannot be
selected as an admissible control. This is true because the use of uj(2)
9 i
would violate some constraint on xi(S), or else is not in U%. (This follows
* 4
from the definition of U;‘) Therefore it is possible that we cannot find
J . . 2 2 1 . .
5 which results in a2 F such that F < "F and in this sense the

procedure is not monotonic. The source of difficulty here is large differences

*
uj(2) € U

in the contents of successive *Ug. These large changes may either arise from
discontinuities in the derivatives of the state vector f(k) or from large’
changes in successive values of the input u(l). In most physical systems
é(k) is continuous and therefore this generally will not’ be the sourceé of
difficulty. The most frequent cause of the trouble will be successive values
of E(l) which are considerably different. As observed in the examples of
Chapter Four, the first major iteration typically results in a value for the
performance index which is well over ninety percent of its ’optimum value
and values for u(k), k =1, 2, ..., K-1, which are close to their optimum
values. Successive changes in E(k) are generally very small, Thﬁs successive
*Ui generally differ by very little and thus this non-monotone character of
the iteration seldom is observed. This is especially true if G is comparable
to F in magnitude so future state space constraints are "strongly" considered
as each component of E(k) is selected. For the examples studied by the
author, no non-monoténic behavior was observed.

If successive passes through all variables produce no further decrease
in H, its value at the end of a major iteration, that is F[x(k), u(k), K],
is at a critical point (not a maximum) subject to the constraints on the

states and contrcls. If the function F has saddle point behavior in the m

times (K-1) variables ui(k), i=1, 2, ..., m; k=1, 2, ..., K-1, the




————

24

critical point bocated may not be a minimum. This is clear since the 'one
at a time' search procedure cannot distinguish certain saddle points from
minima, If the performance index F has no saddle point behavior, the point
of inflection located is a local minimum.

Now that the method has been described it should be elear why we are re-
stricted to fixed-time problems. The constraints are fixed in time initially
and the system is forced to move through the restricted region of the state
space, It is not clear at this time whether or not minimum time problems (for
example) could be handled using this technique.

A question which remains to be answered concerns the ability to sa£isfy
the state space constraints at the next instant., It may occur that at a parti-
cular instant k, the *Ui which we have described earlier is empty. This may
occur for various reasons. For instance, there may be no solution to the
problem (e.g., because of inconsistent specifications), It may be that be-

i

*
cause the current x(k) is not optimum, the Uk

to be calculated is empty.
Work remains to be done to determine whether or not the problem has a solution

and, if it does, to develop a technique to &ccount: for..this particular.time

instant which seems to have no admissible controls.



4. EXAMPLES

In this chapter the method described earlier is appnlied to three specific
problems. The first problem is deliberately chosen to be simple and it is easy
to follow the details of the method. The problem is stated as a discrete one
in order to eliminate the necessity for considering the relationship between
differential and-difference equations. A discussion of such matters may be
found elsewherelg°

The second and third examples are problems described elsewhere but not
solved numerically. A detailed discussion of the origin and significance of
the problems and their solution are to be found in Sections 4.3 and 4.4.

The examples to be described were programmed on the Control Data Corporation
1604 in the Fortran compiler language. The program is written so any problem
of the type considered (i.e., invertible systems) can be run by changing only
three subprograms. In these subprograms, the system, the inverted system and
the performance index are described. Data to the program includes range'of
initial conditions, state and control space constraints, final time and step
size and a list of parameters which may be used as desired.

A block diagram of the program is shown in Appendix B. The terminology
of the flow chart is the same as in Chapter Three.

Several observations about the examples are in order. First, all curves
are drawn with continuous lines joining data points. This is to help visualize
the results only. Actually data only exists at a discrete set of points which
are clearly marked on each sheet.

The trajectory problems show a very strong sensitivity to initial condi-
tions. For this reason, the ability to optimize initial conditions as well
as controls is of fundamental importance. In practice it is frequently true

that initial conditions may be selected within a certain range. The trajectory
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examples indicate that substantial advantages exist by careful choice of these
initial conditions.

One point of significance is the effect of multipliers on the performance
index. In the examples shown in this chapter terminal constraints are handled
by means of penalty functions, i.e., positive semi-definite functioné of the
difference between actual and desired final states. Each terminal constraint
is weighted according to its importance relative to fuel cost, thrust limitations,
vehicle lifetime, etc. Proper selection of the weighting factors can be of
considerable importance in obtaining realistic answers. Much more should be
said about these considerations. However, this is not the place for it. It is
sufficient to say that a poor choice of weights will preclude a realistic solu-
tion of these optimization problems.

4,1 Example One ~ A Discrete Linear System

Figure 4.1-1 shows a block diagram‘of the system under consideration. Its

state vector representation is given below:

xl(k + 1) —xl(k) + xz(k) + ul(k)

xz(k + 1)

+x1(k) - xz(k) + u2(k) (4.1.1)

State and control space constraints shown in Figure 4.1-2 are

- - (4.1.2)

[
jr
IN
i
~~
W
N
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+
ot
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Figure 4.1-1,

Discrete System for Example One
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Figure 4.1-2,

+1 4

uz(k)

State and Control Space Constraints for Example One
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where *1 represents a two~vector both of whose elements arer+l or -1, re-
spectively.

The performance index chosen for this problem is:

2 9 2 9

2 2
Z, xy) + B ui) + M | x, a0y - .5 | (4.1.3)

= =
F= 2 ¥y

where M is a constant chosen to drive xl(lo) sufficiently close to .5,

Initial conditions selected are xl(l) = x_(1) = +1, Initially the optimal

2
control is guessed to be u(l) =0, k =1,2,,...,10.
With M = 1.0, Figures 4.2-3 and 4.2-4 show the state variables at the end

of certain major iterations. Figures 4.2-5 and 4.2-6 show the control variables

for certain major iterations.

The value of the performance index shown in Figure 4.2-7 is seen to decrease

monotonically with the number of major iterations as explained in Chapter Three.
If we consider (just for illustration) that its final value is .115, then it

is within .03 of its final value after just one iteration. That is, in one
iteration it has decreased more than 99,999% of the total decrease to be ex-
pected. It might be noted that many numerical procedures converge extremely
quickly during the first few iterations, then quite slowly aftg; that. Using
the FORTRAN program mentioned above, each (major) iteration required about ten
seconds on the CDC 1604,

One other appropriate remark involves the results shown in Figures 4.1-3
and 4,1-4, There at the zeroth iteration we note that state space constraints
are violated. This results from certain of the controls being inadmissible.

In the terminology of Chapter Three, certain of the "'first guess' controls are
J

*ok 2
not in Uk although it is: seen that they do belong to UJ° The method assures

k

that this will not occur for any other major iteration.
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Performance index
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Figure 4.1-7. (Example One) Performance Index vs. Major Iteration Number
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4.2 Example Two - A Midcourse Guidance Problem

In this example the problem of interorbit transfer or more commonly, the
midcourse guidance problemzo, is examined. Consider the equations of motion of
the center of mass of a vehicle moving in two dimensions in the earth's gravi-
tational field. The geometry of this two-dimensional, restricted two-body

problem is shown in Figure 4.2-1. The equations follow:

rl=r2
oo pad N +_U_1
9 = 19 2 "
1
(4.2.1)

0 = 6

r50y Uy
6y = -2 7+ ¢

1 1

where
N = GM = 1014 an/Kg°
G = universal gravitational constant
M = mass of the earth
. 3
m = mass of vehicle = 10 Kg.
To use the notation of the other examples we define rl = Xl’ r2 = xz,
91 = Xg, 92 = Xy We will consider that the vehicle is to be placed into an

earth orbit which takes it through a certain "launching" region in space. From
the optimal point (to be selected) in this "launching’ region the vehicle is to

be transferred to a specified point in a different orbit in a given length of

time. Minimum fuel is to be used and each rocket has a specified maximum thrust.




Figure 4.2-1.

Geometry for Example Two
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The main thruster is constrained to exert force only in the +r direction. The
transverse rockets exert force in the %0 directions. We are to determine the
optimum "launch" point and control program subject to certain comstraints.

Specifically, the constraints are given below.

0 < u, < 500
(4.2.2)
~200 < u, < + 200

960
2 2
We want to minimize J‘ (ui(t) + uz(t)) dt where force is in newtons, time in
Jo
seconds, length in meters, mass in kilograms, and angles in radians. The ini-

tial state is given by
x (0) < x(0) < x (0)

where

The final desired state is specified by only two components of the state Qector
xl(960) = l,5x107, x3(960) = 1.0 and the other components are free. Figures
4,2=2 and 4.2-3 show the optimum trajectory and Figure 4.2-4 shows the optimum
control. (Strictly of course these are only close to the optimal control. This
is clear by examining Figure 4.2-5.) For this problem; relatively little con~
trol effort is required. The initial conditions which are adjustable have a
pronounced effect on the trajectory. With a properly selected initial state,

the vehicle requires only little control effort.
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(Example Two) Angular Position vs, Time
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(Example Two) Performance Index vs. Major Iteration Number
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Figure 4.2-5 shows the behavior of the performance index for this problem.
This figure exhibits the rapid ‘convergence properties mentioned in connection
with Example One.
The performance index used for this problem was
960

F = .00l (ui(t) + ug(t)) at + |x, (960) - 1.5x10"
v 0

+

x3(960) - 1.0

4.3 Example Three - A Lunar Landing Problem

The problem of landing manned or unmanned vehicles on the lunar surface
is an important one currently being studied. There are several formulations
of the problem; the one here being due to Friedlandz° In Figure 4.3-1 the co-
ordinates r and O are defined. r is the distance from the moon's center and
0 is a measure of angular position. As in the previous example we assume two
sets of rockets are mounted on the vehicle, one which exerts force in the +r
direction and a smaller pair to exert thrust in the ie directions. Since the
vehicle is assumed to be in the vicinity of the moon when this phase of the
flight begins, three basic assumptions are employed in the following derivation.
First it is assumed that the total mass of fuel required for the descent is
small compared to the mass of the vehicle so the vehicle mass may be assumed
constant. The flight time of this phase is small with respect to the moon's
period about the earth (about 1 revolution/28 days) so that Coriolis and centri-
fugal forces arising from rotation of the coordinate system (origin at earth,
rotating with moon) may be neglected. Since r/Té is :very .small for this phase,
terms in r/ro of first and higher order will be neglected if compared with unity.

g R

R Mm are the lunar gravitational acceleration, radius and mass,

respectively.
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g, R, Me are the earth's gravitational acceleration, radius and mass,

respectively.

v_ is
e

presence) .

With

motion.

the escape velocity from the moon's surface (neglecting the earth’s

these definitions and

dx

o
-1
=

172
M Rr?
2 &
e m
R
R | o
Sl 733 seCoy T = t/’l‘e
e
1 Me R :
== 1;1 = ,0084
M r
m o
Rm fr
= 2-—fr=3a03w——
v m
e
R £
m 8]
1 5 fe = 3.03 W
v m
e

weight of vehicle on earth.

i

assumptions we can write the equations of

2 1

= (1 +x) % - ——————4+Kcos x, +u

T2 a0+ x)? 41

3
~ 2x1 Xz ) K sin x4 . u2
14 x3 1+ x3 1+ x3
(4.3.1)

':.‘.Xl
—‘-'X2
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where
x. 1s a normalized radial velocity
%, = 1 is the moon's escape velocity
X, is a normalized angular velocity
is a normalized radial distance

X, = 0 1is one moon radius (denoting the lunar
surface)

x  is exactly the angle 0.

The problem solved here used the following constraints:

o
IA

u, (k) < 10.0

~-5.0 < uz(k) < 4+ 5.0

XS(k) >0
-0.2 < x(1) < [-0.2
-0.5 +0.5
+0.2 +0,2
-2.0 -2,0
24
T w (k) < 2000
kil
24
‘ < s0.
I, 0| < 5040

T = 0 corresponds to k = 1

T = 2.4x733 sec. corresponds to k = 25

Time between successive values of k is 73.3 sec. The quantity to be minimized
ig fuel consumption:

24

b2

K1 *

ul(k)

uz(k)
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This is a "difficult” problem because of the large initial value of radial
velocity xl(O). With no control, it was found that the final value of X, was

-91, a rather unreasonable number.

The curves of Figure 4.3-2 show the result of using a state variable

constraint xs(k) > 0 to prevent the vehicle from "going under the lunar surface'.

The control effort required to obtain this trajectory is shown in Figures

4.3~-3 and 4.3-4.

Six major iterations of about 45 sec. each were required for each of the

two runs.
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5. PERSPECTIVE - II
5.1 Summary

A numerical technique for calculating the optimal control for a class of
systems and constraints is described. Nonlinear, time-varying deterministic
systems subject to hard state space and hard control space constrains are con-
sidered. Three numerical procedures are developed to perform the optimization.
A technique for the minimization of a scalar function of a vector variable is
described where the variables are constrained by upper and lower bounds. This
minimization procedure is incorporated in a method of constraint mapping which
maps the state space constraints into the control space. To improve convergence
properties of the optimization procedure the notion of a pseudo performance in-
dex is introduced. Initial and final states may be partially or completely
specified. Any unspecified initial or final state vector components are opti-
mally selected.

An iterative technique for the optimization is demonstrated which gener-
ally converges to a local minimum of the performance index. The method uses |
the direct approach to optimization and is very efficient computationally.
Examples of space vehicle trajectory optimization problems are givenf
5.2 Critique

This thesis is intended as an introduction to a particular approach to
totally constrained optimization problems. The systems which can be optimized

using the techniques given earlier are quite general. However, certain re-

strictions were found to be helpful. The notion of‘inverfible systeﬁs is, to
the author# knowledge, one which has not been explored before. The question
naturally arises concerning the necessity or desire for studying invertible

systems.. It turns out that many common systems currently under study are in-

vertible. Is there something inherent in the structure of invertible systems
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which makes them of particular interest? WMaybe they are not of particular inter-
est, It would seem that further effort might be expended in this direction.

The use of direct optimization methods is not "in style" these days, It
does not appear that adequate justification for this state of affairs has been
given. ‘The contribution of this thesis is based on a direct approach to opti-
mization problems and the author feels that more effect should be devoted to this
area of technology.

To be more specific concerning the results obtained in this thesis, there
is one particular difficulty which may arise., Examples can be found to produce

.
the following effect. What‘explanatioﬁnmight be given if, during the optimi-
zation procedure, it was discovered that no control could be found to satisfy
state space constraints? If that happened, there are two possible explanations.
Either the problem as stated has no solution or else the method has led us astray.
We will assume that at time ki, it is determined that there are no admissible
controls. This implies that the state or control space constraints (or both)
are "too tight" at this step in the optimization procedure. If we know (from
physical reasoning, perhaps) that a solution does exist, we must then "invent"
2 technique for determining it. A method which could be used is to loosen the
constraints for the initial major iterations, then, as the optimum control is
approached, to tighten them to their correct vlaues. We are still left with the
question of existence if this scheme fails to generate an admissible control.
Without quantitative results it would seem that this constraint tightening scheme
would eliminate this trouble. However, there is much to be done in this comn~

!

! % 4
nection, One test which might well be performed is to calculate Ui for all j

*
and k. If we find any given U’

k = ¢ then this surely means there is no solution

x5 *E 5 *K_ 5 *_ 5
because Uﬂ = ¢ implies that- Ui = ¢ since Ui (- Ui,
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A significant advantage of the method proposed over other computational
schemes is shorter computation time. Running times for the three examples were
given in Chapter Four. These times are less because of inherent computational
advantages of direct methods over indirect ones and also because of the number
of "sampling" intervals considered. Just to mention one aspect of the indirect
approach, two point boundary value problems are quite costly with respect to
computation time. (Details of the two point boundary value problem may be
found elsewhereZIQ) Using the method of this thesis, many fewer partial de-
rivations are needed since we do not require travel in the direction of steep-
est descent; many fewer equations need to be integrated because we do not use
adjoint systems, etc. On the other hand, the problem of assured convergence
mentioned above is not to be underestimated. We can only point out that no
work has been published to date which provides a computationally efficient
method for solution of the nonlinear time-varying problem with many state and
control space constraints. The work of Bryson and Denham16 is the first ef-
fective step in this direction using indirect techniques.

5.3 Comments on Further Engineering Research

Scattered throughout this thesis are ideas and suggestions foxr further
work. In this section, some of these ideas are collected. For this work, we
have limited our state space and control space constraints to those of the form
of (2.2.3) and (2.2.4) rather than considering Q[x(k), u(k), k] > 0. It is true
that, in certain cases, the constraints considered here will not be adequate.
However, it is also true that when these constraints represent meaningful
physical limitations we have demonstrated an optimization technique possessing
unusual computational efficiency. We have traded generality for this. This
trade is called engineering judgment and such judgment should pervade engineer-~

ing research.
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One area of further study should be to discover what engineering approxi-
mations and simplifications can be used to improve existing theoretical results
to make them more practical for "real world" applications. The notion of in-
vertibility may be of some importance for future analysis techniques. The method
proposed should be extended to non-fixed-time problems. More general constraints
may be considered and new results found there.

An engineering constraint which deserves more attention is that of piece-
wise constant controls in continuous systems. The physical nature of some con-
trolling devices indicates that this is an area of no small importance.

The idea of constraint mapping discussed in these pages may be extended,
for example, to performance index mapping in order to permit the actual opti-
mization to take place strictly in the control space. There seems to be much
additional work to be done in this field of mapping for optimization.

A feedback solution to the problem posed in this work would‘be a welcome
addition to current research results. There is little work in the literature

on this subject.
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Pg. 8, Eq. (2.1.5) should be:

(kD) = £[x(k),D] + B[x(k),A] Hluk)] [1]; k=1,2,...,K
1
1
Pg. 14, first sentence after description of sets should be: It is clear
* Kk
that lU, U and U are compact.
Pg. 16, Eq. (3.2.5) should be:
x(kd) = £[x(k),A] + B[x(k),A] H[u(k)] |1
1
1
Pg. 21, line 3: ---- k =1,2,,,,.,K~1. Moreover, ----
Pg. 21, line 7: ~--- and K~1 minor ----
Pg, 22, line 17: ---~ and X-1 minor ----
Pg. 22, line 18; ---- k=1,2,,,,,,K-1.=-—-
Pg. 29, 7th line should be: control is guessed to be u(k) = 0, k=1,2,..,
Pg. 51, line 6: ‘'effect' should be "effort',
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